Random Graphs
 Exercise Sheet 6

Question 1. Suppose we flip n biased coins, each which land heads with probability p and tails with probability $1-p$, independently of the others. Let X be the number of heads flipped, let Z_{i} be the result of the i th coin flip and consider the martingale given by $X_{i}=\mathbb{E}\left(X \mid \sigma\left(Z_{1}, \ldots, Z_{i}\right)\right)$. Using the Azuma-Hoeffding inequality bound, for any $t \geq 0$, the probability

$$
\mathbb{P}(|X-\mathbb{E}(X)| \geq t)
$$

Compare this to the Chernoff bounds.
Question 2. Let X be the number of triangles in $G_{n, p}$. For what values of p does it hold with exponentially high probability that

$$
X=(1+o(1)) \mathbb{E}(X) ?
$$

Question 3. Let p be fixed, $\varepsilon>0, b=\frac{1}{1-p}$ and let $k=(2-\varepsilon) \log _{b} n$. Let Y be the largest size of a collection of vertex disjoint independent sets of size k in $G_{n, p}$ and let \mathcal{K} be the collection of all independent sets of size k in $G_{n, p}$. By choosing a random subset of \mathcal{K} and using the alteration method, show that

$$
\mathbb{E}(Y) \geq(1+o(1)) \frac{n^{2}}{4 k^{4}}
$$

Deduce that

$$
\mathbb{P}\left(\alpha\left(G_{n, p}\right)<k\right) \leq e^{-\tilde{\Omega}\left(n^{2}\right)}
$$

where $\tilde{\Omega}$ means up to polylog factors.
Question 4. Let $p \geq \frac{(1.001)}{n}$. Show that

$$
\mathbb{P}\left(\chi\left(G_{n, p}\right) \geq 3\right) \geq 1-\frac{1}{\log n}
$$

Question 5. Let $\operatorname{tcl}(G)$ be the largest t such that G contains a subdivision of a complete graph K_{t}. Show that with high probability

$$
\operatorname{tcl}\left(G_{n, 1 / 2}\right)=O(\sqrt{n})
$$

(* Show that in fact with high probability $\left.\operatorname{tcl}\left(G_{n, 1 / 2}\right)=\Theta(\sqrt{n})\right)$
Question 6. Let $\operatorname{ccl}(G)$ be the largest t such that G contains a K_{t} minor. Show that with high probability

$$
\operatorname{ccl}\left(G_{n, 1 / 2}\right)=\Theta\left(\frac{n}{\sqrt{\log n}}\right)
$$

